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The structure observed in concentrated polymeric micelles results from interactions between coronal chains
that develop as micelles are brought to approach distances where the chains either compress or interdigitate.
One powerful model for polymeric micelles comprises spherical particles with chains tethered to their core at
a specified surface density. This treatment combined with self-consistent field theory provides an estimate of
the pair interaction potential between micelles. These pair interaction potentials allow modeling of the structure
and thermodynamic properties that depend on the overall micelle concentration. We perform neutron scattering
experiments to measure the short-range correlations in the liquid, through the static structure factorS(q), and
compare these results with models that rely on a solution of the Ornstein-Zernike equation subject to a
Rogers-Young closure. A description of the homogeneous liquid serves as the basis for employing density
functional theory~DFT! to estimate the free energy of the solid. In this investigation, we use the modified
weighted density approximation of Denton and Ashcroft@Phys. Rev. A39, 4701~1989!# to estimate the free
energy of the solid for each of our micellar systems to predict the liquid-solid phase transition. Although we
experimentally observe transitions to face-centered-cubic~fcc! and body-centered-cubic~bcc! crystals depend-
ing on the length of the corona relative to the core, we only predict a simple liquid-fcc transition with the DFT
method. The nature of the transition suggests a simple perturbation result using the hard sphere as the reference
system. Despite the inability to predict the bcc lattice type, both DFT and hard-sphere models accurately
predict coexistence over the entire range of our experiments.@S1063-651X~96!09811-X#

PACS number~s!: 61.12.Ex, 61.25.Em, 83.70.Hq, 64.70.Dv

I. INTRODUCTION

The ability to predict phase transitions offers one of the
most stringent tests for an accurate model of the thermody-
namic properties of real systems. Much of this research fo-
cuses on combining model pair-interaction potentials with
simulation methods such as Monte Carlo~MC! @2# or mo-
lecular dynamics~MD! @3,4#. The simulations yield exact
results for model pair interactions preserving pairwise addi-
tivity @5#, when finite size effects are considered.

One of the more important findings from simulations are
the liquid-solid transitions occurring in systems having re-
pulsive interaction potentials. Perhaps the most exhaustive
investigation involves the inverse-power potentials where the
potential energyu(r ) decays asr2n @6–8#. This model po-
tential spans long-range interactions such as the one-
component plasma whenn51 to short-range interactions in-
cluding hard spheres whenn approaches infinity. Extensive
studies of hard spheres show a temperature-independent
first-order transition from liquid to face-centered crystal with
a freezing volume fraction of 0.494 and a melting volume
fraction ff , of 0.545 @9–11#. One unique feature of the
inverse-power system is that their freezing transition is quite
sensitive to the range of the repulsion@6#. In particular for
3,n,6, the systems exhibit a stable body-centered-cubic
~bcc! phase. Although Hoover, Young, and Grover con-
cluded that the bcc phase was stable for 3,n,7, Laird and
Haymet @12# later showed thatn56 represents the largest
value of n having a stable bcc phase. Although very few
physical analogs exist for 3,n,6, this pioneering work es-

tablished the perception that the range of the repulsion dic-
tates the nature of the liquid-solid transition.

Another important soft-sphere potential is the Yukawa re-
pulsion which corresponds to a screened Coulombic interac-
tion u(r )'exp(2kr )/r , where 1/k is the screening length.
Robbins, Kremer, and Grest@13# performed MD simulations
on this system and found stable body-centered-cubic~bcc! at
low screening~small k! and face-centered-cubic~fcc! at
largek. Charged colloidal particles forming fcc and bcc ar-
rays can be successfully modeled with this potential@14#.

Along with the Lennard-Jones potential@15,16#, the
Yukawa and inverse-power potentials represent the most
thoroughly investigated model systems with complete phase
diagrams. Although model potentials such as the finite step
repulsion @17# and two-species soft core models@18# also
have complete phase diagrams, they suffer from having lim-
ited physical analogs. The phase diagrams for other models,
such as the Gaussian core studied by Stillinger and Weber
@19,20#, are still incomplete.

The computationally time-consuming nature of MD and
MC simulations has propelled the field into less computa-
tionally intensive methods to predict thermodynamic proper-
ties. This includes liquid-state theories@21# based on integral
equations and density functional algorithms@22# for predict-
ing liquid-solid transitions. While these methods are approxi-
mate, they yield estimates of the thermodynamic properties
approaching the accuracy of traditional simulation schemes.
The density functional theory~DFT! has gained broad appli-
cability because it relies on information about the homoge-
neous liquid to predict the free energy of the solid phase. The
algorithm for relating the free energy of the solid to the uni-
form liquid defines both the method and its accuracy. Al-
though several versions of density functional theory exist*Author to whom correspondence should be addressed.
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@22#, the weighted-density approximation of Curtin and Ash-
croft @23# is both tractable and accurate; the modified
weighted density approximation~MWDA ! @1# provides close
agreement with MD results for hard-sphere systems.

Laird and Kroll @24# applied several DFT methods to the
inverse-power potential with mixed results. All methods
were unable to predict a stable bcc phase, even under condi-
tions where MD simulation results clearly show that the bcc
phase is most stable. Only the weighted density approaches
@1,23# provided a stable solution for all values ofn in the
inverse-power potential. They suggest that as the interaction
increases in range, the DFT is unable to accurately map the
interactions of the liquid onto the strongly correlated solid.
In this case, the interaction potential extends over several
lattice spacings and may explain the failure of the DFT to
predict a stable bcc phase for long-range potentials despite
the relatively accurate prediction of the hard-sphere transi-
tion.

With this in mind, the goal of this paper is twofold:~1!
utilize pair-interaction potentials to understand the liquid-
solid ~fcc and bcc! transition observed in concentrated solu-
tions of polymeric micelles, and~2! apply the density func-
tional theory to determine its applicability in systems with
repulsions extending over a finite range. We characterize the
interactions between polymeric micelles with self-consistent
field equations~SCF! for tethered-chain systems. Liquid
state models offer predictions of the short-range correlations
that are compared to small angle neutron scattering experi-
ments at various liquid concentrations. The liquid-state
theory models the thermodynamics of the homogeneous liq-
uid through the radial distribution function. This information
serves as the basis for predicting the liquid-solid transition
using the MWDA method.

II. EXPERIMENT

A series of highly monodisperse, perdeuterated
polystyrene-polyisoprene~d-PS–PI! diblock copolymers
with varying block sizes and ratios were synthesized by a
conventional, anionic polymerization technique@25#. The
molecular weights for these diblock copolymers are reported
in Table I. In all cases the polydispersity index is below or
equal to 1.03. When these diblocks are suspended in decane,
a solvent preferential for the polyisoprene block, the copoly-
mers aggregate into spherical polymeric micelles comprising
a dense core ofd polystyrene and a diffuse corona of poly-

isoprene. Although the micelles coexist with free chains, the
critical micelle concentration is so small~approximately
1023 to 1022 wt. % polymer! the solutions are dominated by
micelles at all concentrations investigated here~ranging from
0.5 to 30 wt. %!. More importantly, the micelles have a
narrow range of aggregation number and can subsequently
be treated as monodisperse spherical particles@26#. Portions
of deuterated decane~Cambridge isotopes, 99% deuteration!
and hydrogenated decane are mixed~0.107 mole fraction
deuterated decane! to match the coherent scattering density
of hydrogenated polyisoprene. As a result, the intensity mea-
sured from these suspensions are described by the scattering
from constant density, sphericald-polystyrene cores and the
spatial correlations developing at liquidlike concentrations.

The small angle neutron scattering experiments~SANS!
were performed at beam line NG7 at the National Institute of
Standards and Technology~NIST!. Details about the beam-
line facility are given elsewhere@27#. All intensity measure-
ments were taken at an incident wavelength ofl57.00 Å
~Dl/l50.11; full width at half maximum!. The sample to
detector distance was 11.0 meters giving a scattering vector
q@q5~4p/l!sin~u/2!, whereu is the scattering angle# causing
q to range from 0.005 Å21 to 0.1 Å21. Data were placed on
an absolute scale by cross referencing with the NIST silica
standard using standard reduction techniques@28#. In addi-
tion, all experiments were performed at room temperature.

Experiments on monodisperse suspensions obey a simple
form for the scattering intensity representing a product be-
tween the form factor and the structure factor@29#

I ~q!5rP~q!S~q!. ~1!

The form factorP(q) accounts for the intramicellar interfer-
ence describing the spherical shape of the particle andr is
proportional to the number density of particles. The static
structure factorS(q) describes the interference arising from
intermicellar interference, the short-range spatial correlations
present in liquidlike micellar suspensions.

Characterizing these micellar suspensions at dilute con-
centrations~0.1 to 0.5 wt. % polymer! serves two purposes.
Since no correlations between particles exists, the measured
intensity depends only on the intramicellar interference

I ~q!5rP~q!, ~2!

TABLE I. Aggregation numbers and length scales describing polymeric micelles comprisingd-PS/PI
diblocks in decane.

Polymer
d-PS/PI f A

Rc ~Å!
P(q)

RT ~Å!
S(q)

Rh ~Å!
DLS

Reff ~Å!
SCF

z/2Rc

R-Y
Expt. lattice

type
Lind. ratio

QL

15 K/15 K 80 74 63 195 185 0.111 bcc 0.171
19 K/8 K 270 116 100 184 189 0.139 fcc 0.139
20 K/10 K 235 117 103 220 207 0.133 fcc 0.157
33 K/22 K 335 150 136 362 329 0.100 fcc 0.137
36 K/36 K 245 142 141 467 432 0.084 bcc 0.189
44 K/22 K 420 204 197 484 401 0.125 fcc 0.184
40 K/40 K 90 106 78 296 275 0.100 bcc 0.182
45 K/45 K 130 137 145 450 472 0.090 bcc 0.165

5448 54GLEN A. McCONNELL AND ALICE P. GAST



allowing the separation of form and structure observed at
higher concentrations, so that we can determine an experi-
mental static structure factor for the liquidlike concentrations
reported in this work. Secondly, we can model the form fac-
tor using constant density, solid-sphere models subject to a
Schulz distribution function@30,31#. We present in Fig. 1~a!
the form factor ford-PS–PI 20 K–10 K micelles in decane
with the scattering contrast matched to the PI chains so that
only the core shows; the line is the micellar core fit with the
Schulz distribution solid sphere. Combining this with Zimm
analysis@32# for absolute intensity allows the specification of
core radiusRc and aggregation numberf A . We see no evi-
dence of a virial contribution at low concentrations between
0.1% and 0.5%; thus we can use Zimm analysis to determine
the aggregation number. The aggregation number does not
seem to vary significantly with concentration. Our best evi-
dence for this is the correspondence between missing peaks
in the x-ray diffraction pattern for the ordered arrays and the
minima in the form factors for the dilute micelles@26#.

This information goes into our self-consistent field~SCF!
calculations@33–35# of chains tethered to spherical cores
@36–38#. These SCF models require the number of segments,
N, for the solvated chainN5MwPI /(68Kr); hereKr is the
Kuhn ratio,~1.57 @39# for PI in decane!, the curvature rela-
tive to the PI segment lengthb, ~Rc/b; b58.28 Å! and the
tethered-chain surface density [f Ab

2/(4pRc
2)]. Given this

information, we determine the PI concentration profiles from
the SCF calculation. An illustration of the ability of the SCF
model to depict the tethered PI layer is shown in Fig. 1~b!,
where we show the form factor for a dilute suspension of
d-PS–PI 20 K–10 K micelles in decane with the scattering
length density matched to thed-PS cores. The PI volume
fraction profile used for the fit is shown in the inset. We then

calculate the pair interaction potentials by solving for the
free energy for a pair of polymeric micelles as a function of
their separation. Thus, in analogy with other colloidal sys-
tems, the influence of the PI corona is described in terms of
the interaction potential between the cores. The interaction
potential is zero for separations greater than the overall di-
ameter of the micelle and the range depends on details asso-
ciated with the core curvature, surface density, and degree of
polymerization of the PI block. The pair potentials for the
micelles formed from the diblocks stated in Table I were
presented previously@40# and are used here for the liquid-
state and density functional theories.

III. RESULTS AND DISCUSSION

A. Liquid-state theory

As described in Sec. II, scattering at dilute concentration
provides sufficient characterization of each micellar system
to utilize self-consistent mean field calculations to define the
pair interactions between micelles. Within this model, we
calculate the increase in free energy caused by compressing
or interdigitating the coronal layers as a function of center-
to-center separations. This provides a pair-interaction poten-
tial for the liquid-state theory, thus allowing the prediction of
the thermodynamic state of the micellar suspensions ob-
served at liquidlike concentrations.

We predict the structural and thermodynamic properties
of a homogeneous solution by solving for the radial distribu-
tion functiong(r ), at a specified densityr, and our SCF pair
interaction potentialu(R) @5,21#. The radial distribution
function measures the local probability of finding another
particle some distance from a reference particle. As a result,
the radial distribution function represents a composite of di-
rect and indirect particle interactions. These interactions are
decomposed into separate interaction functions: a direct
correlation functionc(r ), describing the direct influence of
one particle on any other, an indirect correlation function
g(r ), describing the influence of one particle on another
through a third particle, and a total correlation functionh(r )
5g(r )21, including both direct and indirect contributions.
Ornstein and Zernike developed a convolution integral equa-
tion relating all particle interactions@5#

g~r 12!5h~r 12!2c~r 12!5rE c~r 23!h~r 13!dr3 , ~3!

where the total correlation functionh(r ), can again be rep-
resented by higher order direct and indirect correlation func-
tions. Applying this method recursively generates an infinite
series expansion in powers of the particle density that depend
on higher order integrals of the direct and indirect correlation
functions. Solving the Ornstein-Zernike equation requires a
closure to relate two of the correlation functions to each
other through the pair-interaction potential. Since the infinite
series expansion represents the influence of specific clusters
that can be expressed diagrammatically, the closure relations
amount to assigning the cancellation between certain clus-
ters. The quality of the closure then defines the accuracy of
integral equations for describing liquid-state properties.

Although several closure relations exist to the Ornstein-
Zernike equation, two of the most common include the
Percus-Yevick~PY! @41,5,21#

FIG. 1. ~a! SANS form factor for micelles formed fromdPS–PI
20 K–10 K diblocks in core contrast decane~achieved by mixing
portions ofd-decane andh-decane! at 0.5 wt. %. The lines corre-
spond to the form factor for polydisperse spheres of core radius of
117 Å using a Schulz distribution with a polydispersity indexZ of
90. ~b! The form factor in PI contrast decane where only the micel-
lar corona scatters. The line is a fit to the density profile from the
SCF model illustrated in the inset.
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g~r !5exp@2bu~r !#@11g~r !# ~4!

and the hypernetted chain~HNC! @42,5,21#

g~r !5exp@2bu~r !#exp@g~r !# ~5!

relations. The HNC relation appears to best describe the
liquid-state properties of particles interacting through longer-
range potentials such as the one-component plasma. The PY
closure has effectively described the liquid-state properties
of hard-sphere particles, a system with a short-range interac-
tion potential. Thiele and Wertheim@43,44#, however, dem-
onstrated the limitations of the PY closure on hard-sphere
systems by comparing the pressure calculated from the pres-
sure equation

P

kT
5r2

r2

6kT E
0

`

r
]u~r !

]r
g~r !4pr 2dr ~6!

with that calculated from integration of the compressibility
equation

1

kT

]P

]r
5

1

114prE
0

`

@g~r !21#r 2dr

5
1

S~q50!
~7!

and demonstrating a lack of agreement observed at higher
densities. Although Carnahan and Starling@45# arrived at a
simple and accurate equation of state for hard-sphere sys-
tems, the lack of agreement in the pressure derived from two
independent equations, referred to as thermodynamic incon-
sistency, is regarded as an important problem for liquid-state
theories to overcome.

In recent years significant advances in integral theories
have addressed the issue of thermodynamic consistency. One
successful approach was developed by Rogers and Young
@46#. This approach imposes a simple restriction of thermo-
dynamic consistency with respect to one variable, the os-
motic compressibility. The osmotic compressibility is calcu-
lated directly from Eq.~7! while that determined from the
pressure Eq.~6! is

1

kT

]P

]r
512

r

3kT E
0

`

r
]u~r !

]r
g~r !4pr 2dr

2
r2

6kT E
0

`

r
]u~r !

]r

]g~r !

]r
4pr 2dr. ~8!

The Rogers-Young relation is a hybrid method mixing the
PY and HNC closures such that the radial distribution func-
tion is given by

g~r !5exp@2bu~r !#H 11
exp@g~r ! f ~r !#21

f ~r ! J , ~9!

where

f ~r !512exp~2zr !. ~10!

At r50, f ~0!50 and the Rogers-Young recovers the PY clo-
sure relation. Asr increases,f (r ) approaches unity and the
closure relation approaches the HNC equation. In this man-

ner, the Rogers-Young relation uses the PY method at short
distances and transforms to the HNC method at large sepa-
rations at a rate determined byz. The value ofz is adjusted to
achieve thermodynamic consistency through agreement be-
tween the osmotic compressibility calculated from Eqs.~7!
and ~8!. The resulting thermodynamic properties, including
the radial distribution function, agree with molecular dynam-
ics simulations for several model potentials@46–50#.

Within this scheme we are combining an interaction po-
tential calculated at discrete separations from SCF theory
with the Rogers-Young closure to determine the radial dis-
tribution function for our polymeric micelles at liquidlike
concentrations. To accomplish this goal, we modify Gillan’s
method@51#, a numerical basis for calculating the radial dis-
tribution function from a discrete interaction potential. In this
method, the indirect correlation function is broken into
coarse and fine parts. The coarse part is expressed as a set of
seven to ten orthonormal basis functions with unknown ex-
pansion coefficients. The fine part of the indirect correlation
function is solved using Picard’s method. We iterate until the
differences are less than 10210 or 10220. To achieve thermo-
dynamic consistency, we employ Gillan’s method at a par-
ticular value ofz, calculate the osmotic compressibility from
both the pressure and compressibility equation, and apply
Newton-Raphson to generate a next best guess forz. We
accept convergence when the compressibility calculated
from both equations agrees to within 2%. Table I shows the
values ofz required to achieve thermodynamic consistency
for the interaction potentials describing our micellar systems.

One feature of the convolution integral formalism is that
the Fourier transform of the Ornstein-Zernike equation re-
sults in a simple algebraic expression

H~q!5C~q!1rC~q!H~q!. ~11!

For a liquidlike suspension the theoretical structure factor
becomes

S~q!511rH~q!, ~12!

allowing direct comparison of the experimentally measurable
structure factor with our liquid-state models. Figure 2~a!
shows a comparison of experimentally measured structure
factors with the model structure factors for micelles compris-
ing diblocks with a 20 000 molecular weightd-polystyrene
block and a 10 000 molecular weight polyisoprene block at
various overall polymer concentrations. We extrapolate the
model structure factors to wave vectors below those experi-
mentally accessible because the value ofS(q50) equals the
inverse of the osmotic compressibility and we want to show
how this varies with overall micelle concentration. These
micelles have a mean aggregation number of 235 diblocks
and a core radius of 117 Å. By measuring the scattered in-
tensity at several concentrations we can test the validity of
the SCF pair-interaction potentials. The model structure fac-
tor is obtained by adjusting the volume fraction and core
radius via a Marquardt-Levenberg nonlinear regression sub-
ject to the Rogers-Young closure for the interaction poten-
tial. This thermodynamic radiusRT dimensionalizes the
structure factor with respect to the scattering vectorq. We
find that the value ofRT converges to a consistent value with
variations of less than 3% for all systems; however, in some
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micelles this value underpredicts the core radius by as much
as 15% from our dilute characterization.

The thermodynamic core radius is the means of placing
the interaction potential on a dimensional basis. One short-
coming of the SCF model is the presumptive nature of the
interface. We idealized the polymeric micelles by determin-
ing core radii and tethering densities, and calculated pair
interactions for spheres with polyisoprene chains tethered to
perfectly sharp interfaces. In reality, the micelles are dense
cores of polystyrene with some modest interfacial region for
the effective tethering junction. According to our contrast
match experiments, we expect this interfacial region to be on
the order of 5 to 10 Å. Although the form of the interaction
potential should be quite insensitive to the presence of the
interfacial region, we expect the interface to directly influ-
ence the actual dimensional length of the pair-interaction po-
tential. Thus we anticipate as much as 5% deviation between
the thermodynamic core radius and our experimentally deter-

mined core radius from dilute solution scattering. If we cor-
rect the volume fraction to account for this variation, then we
obtain excellent agreement between experimental and model
core volume fractions.

The agreement between experimental and model structure
factors establishes the accuracy for modeling the thermody-
namic properties of the liquid state. In Fig. 3 we demonstrate
the radial distribution functions for the micelles comprising
20 000–10 000d-PS–PI diblocks at the respective concen-
trations. We can predict the pressure of the liquid state as a
function of density with these distribution functions through
Eq. ~6!. The density relates to the core volume fraction as
FPS5~p/6!r(2Rc)

3. Owing to the different molecular
weights of PI in each micellar system, the range of the re-
pulsion is correspondingly altered, changing the core volume
fractions where the pressure diverges, as shown in Fig. 4.
Accurately predicting the pressure of the micellar liquid is
necessary to estimate the excess free energy of the liquid.
The total Helmholtz free energy is the sum of the excess

f 0
ex~r!5E

0

rFP~r8!

r8kT
21Gdr8 ~13!

and ideal free energy for the liquid

f id5 ln~r!21. ~14!

B. Density functional theory

Density functional theory allows the prediction of the
thermodynamic properties of an inhomogeneous solid based
on information about the homogeneous liquid. This theory
relates the second functional derivative of the free energy to
the direct correlation function

lim
rs→r

2b
d2Fex

dr~r !dr~r 8!
5c0

~2!~r ,r 8!. ~15!

FIG. 2. ~a! SANS static structure factors for micelles formed
from dPS–PI 20 K–10 K diblocks in core contrast decane
~achieved by mixing portions ofd-decane andh-decane! at the
following polystyrene core volume fractions~FPS!: FPS50.014
~n!; FPS50.024 ~d!; FPS50.036 ~1!; FPS50.048 ~n!;
FPS50.068~s!; FPS50.088~j!. The lines correspond to fits using
the SCFu(r ) potentials@40# subject to the Rogers-Young closure
@46#. ~b! The Fourier transform of the direct correlation function
derived from Eq.~20! for experimental data compared with results
from the Rogers-Young closure. The Fourier transform of the direct
correlation function represents the homogeneous property influenc-
ing the MWDA result through Eq.~19!.

FIG. 3. Radial distribution functions for the micelles formed
from dPS–PI 20 K–10 K diblocks in decane as a function of sepa-
ration distance scaled upon the core diameter. The radial distribu-
tions result from using the SCFu(r ) @40# potentials subject to the
Rogers-Young closure@46# for the polystyrene core volume frac-
tions indicated in Fig. 1.
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In the limit where the density approaches that of an actual
liquid, Eq. ~15! is exact. Although all density functional
theories rely on Eq.~15! as their foundation, several methods
have developed over the years to apply this relation to the
inhomogeneous solid. The second order methods based on a
truncated Taylor-series expansion offer simpler calculations
but can be quite inexact and yield unphysical results@22,52#.
The more successful weighted density approaches@1,23#
both assume that the excess Helmholtz free energy of the
inhomogeneous solid is equal to that of the liquid evaluated
at some effective density

Fex

N
5 f 0

ex~r!. ~16!

The weighted density approximation~WDA! offers a more
explicit theoretical formalism but is more computationally
involved. The second version, known as the modified
weighted density approximation~MWDA !, gives a simpler
procedure with essentially equivalent results to the original
weighted density approximation.

The solid phase is represented by a sum of normalized
Gaussians centered about their lattice sitesR, such that

rs~r !5~a/p!3/2(
R

exp~2aur2Ru2!, ~17!

with the following Fourier components

rG5rs exp~2G2/4a!, ~18!

whereG denotes the values of the reciprocal lattice vectors
~RLV! for the solid@53#. The exact values ofG depend on
the lattice type and overall density of the solid phase. The
localization parametera determines the widths of the Gaus-
sians and is a measure of the nonuniformity of the solid;

a50 corresponds to a uniform liquid anda approaching in-
finity signifies that the particles are fixed at their lattice po-
sitions.

Applying the MWDA largely amounts to satisfying the
following relation:

r̂5rsF12
1

2b f 08~ r̂ ! (
G

exp~2G2/2a!C~G; r̂ !G ,
~19!

whereC(q) is the Fourier transform of the direct correlation
function evaluated at the corresponding values of the RLV
for the proposed effective density. SinceC(q) is input into
the density functional theory, it is important to model it ac-
curately. One benefit of our scattering experiments is that we
measure the static structure factor which is closely related to
the Fourier transform of the direct correlation function@21#

C~q!5
1

r@12rS~q!#
. ~20!

We show a comparison of the experimentally determined
Fourier transform of the direct correlation function with the
model in Fig. 2~b!. The ability to model the direct correlation
function allows us to apply the MWDA to our micellar sys-
tems.

The value off 08(p) is calculated from the pressure given
by Eq. ~6!. Essentially, Eq.~19! yields an effective density
for each value ofa subject to one true density for the solid.
The exact value ofa becomes important for two reasons.
First it determines the ideal contribution to the Helmholtz
free energy

bF id

N
5 3

2 ln~a/p!2 5
2 , ~21!

such that the total Helmholtz free energy is a sum of the
excess and ideal contributions and becomes a function of the
localization parametera. The total free energy, the sum of
Eqs. ~16! and ~21!, is then minimized with respect toa.
Secondly,a is directly related to the mean-square displace-
ment at freezing. The Lindemann parameter@54#, defined as
the square root of the mean-square displacement divided by
the nearest neighbor distance, offers some insight about the
mechanical stability of a solid. A critical value for the Lin-
demann ratio equal to approximately 0.13 was established
empirically for the melting of a solid@21#. Table I lists the
Lindemann ratios for our polymeric micelles using the
MWDA approach. Although these values are slightly higher
than the critical ratio, they represent reasonable estimates
and verify the general applicability of the MWDA method to
our polymeric systems.

The direct correlation function, excess free energy, and its
first derivative serve as the necessary input for the MWDA
prediction of the liquid-solid phase transition in polymeric
micelles. The phase transition is determined by calculating
the total Helmholtz free energy for each phase and using a
double tangent construction to satisfy the equal pressure rule.
Figure 5 shows the free energy predictions for the micelles
comprising 20 K–10 Kd-PS–PI diblocks. The free energies
are a function of the polystyrene core volume fraction since

FIG. 4. The reduced pressure for each micellar liquid as a func-
tion of the reduced density. The pressure is determined by solving
for g(r ) using Gillan’s method@51# subject to the Rogers-Young
closure@46# and applying Eq.~6!. The symbols correspond to the
micelles comprising the followingdPS–PI diblocks in decane: 15
K–15 K ~n!; 19 K–8 K ~d!; 20 K/10 K ~q!; 33 K/22 K ~s!; 36
K/36 K ~3!; 44 K/22 K ~* !; 40 K/40 K ~1!; 45 K/45 K ~L!.
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the pair-interaction potential is nondimensionalized by the
core radius. Specifying the interactions between micelles in
this way establishes an analogy to charge stabilized colloids
studied as a function of the bare colloid volume fraction
where the electric double layer caused by the presence of
counterions is responsible for the pair interaction potential.
For micelles formed from suspending 20 K–10 Kd-PS–PI
diblocks in decane, the freezing volume fraction is 0.088 and
the melting volume fraction is 0.095.

We applied this method to our micellar systems and are
able to summarize our results in the phase diagram with ex-
perimental results and the DFT predictions in Fig. 6. In an
earlier paper@26#, we presented this semiquantitative phase
diagram based exclusively on experimental results. We pre-
pared several micellar systems at various core volume frac-
tions and performed scattering experiments to determine
their phase@26,40#. Each vertical column of data corre-
sponds to experiments on a particular~PS–PI in decane! mi-
cellar system. The best way to summarize these results is to
put the different molecular weight polymers on a common
basis. We do this by using the PS core volume fraction as the
concentration variable as it is independent of any model for
overall micellar size. The interaction potential is then sum-
marized by a measure of its range relative to the micellar
curvature. We supplemented these experiments with small
angle neutron, contrast matching experiments to determine
the core radius and dynamic light scattering to specify the
hydrodynamic layer thickness of the corona. The ratio of the
layer thickness (̂L&h5Rh2Rc) to the core radius (Rc) of-
fers an experimental measure of the length scale of the re-
pulsion relative to the curvature.

The phase diagram presented in this way splits into two
regions where we observe a liquid-bcc transition at large
range relative to curvature and the formation of fcc arrays at
smaller range or larger core radius. The DFT method predicts
the volume fraction for the phase transition for each system
and this is denoted on the phase diagram by the~3! symbols.
Unfortunately, the DFT only predicts a liquid-solid transition
favoring the formation of fcc crystals for all our micellar

systems, even for those systems where the bcc phase is ob-
served experimentally. Since Laird and Kroll@24# discovered
that these DFT theories do not predict a stable bcc for
inverse-power potentials, this raises suspicion about the ac-
curacy of the DFT result.

To explore whether the fcc prediction is an artifact of the
DFT method or accurately represents the stable phase based
on simulation results, we compared these micelles to their
thermodynamically equivalent inverse power potentials.
Since the inverse-power potential is well understood and the
formation of a stable bcc phase occurs forn less than 6, we
decided to compare the liquid-state pressures as a function of
effective density. In this case the effective density is deter-
mined by calculating the thermodynamic radius that causes
the second virial coefficient in the pressure expansion to
match

Reff5
1

2S 3E0`$12exp@2u~r !/kT#%r 2dr D 1/3, ~22!

such that the effective volume fraction becomes

Feff5
p

6
r~2Reff!
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Plotting the reduced pressure as a function of effective vol-
ume fraction~Fig. 7! we can compare the pressures to that of
the hard sphere~n5`!. Increasing the range of the potential
reduces the pressures from the hard-sphere result. One can
see that forn56, the maximum inverse power for the for-
mation of a stable bcc phase, the deviations are quite pro-
nounced. Interestingly, our micellar systems all fall within a

FIG. 5. Total free energy of the liquid~•••! and an fcc solid~—!
for micelles comprisingdPS/PI 20 K/10 K diblocks in decane de-
tailing the liquid-solid transition using the MWDA of Denton and
Ashcroft @1#. According to this model, we predict a freezing core
volume fraction of 0.088 and a melting core volume fraction of
0.095.

FIG. 6. Semiquantitative phase diagram for polymeric micelles
detailing regions of order~d! and disorder~s!. The ~* ! symbols
denote concentrations where diffraction data no longer corre-
sponded to either a bcc or fcc lattice and may represent concentra-
tions where micellar structure is modified. The lines represent the
coexistence curves for the freezing and melting volume fractions as
a function of hydrodynamic layer thickness to core radius
(^L&h/Rc) according to Eqs.~24! and ~25!. The ~3! symbols indi-
cate predictions of melting and freezing volume fractions deter-
mined by density functional theory for each micellar system inves-
tigated experimentally.
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narrow range between the inverse 12 potential and the hard-
sphere result. Since this region is associated with liquid-fcc
transitions, the DFT predictions may be accurate despite our
observation of a bcc phase for some of our micellar systems.

Since we predict only the formation of an fcc phase, the
phase diagram can be simply modeled in terms of hard-
sphere perturbation theory with Eq.~22! defining the effec-
tive hard-sphere radius. The hard-sphere phase transition is
first order with a freezing volume fraction of 0.494 and a
melting volume fraction of 0.545. If we assume a simple
relationship between the hydrodynamic radius and effective
hard-sphere radius, the phase transition becomes

FPS
f 5

0.494

B3~11^L&h /Rc!
3 ~24!

and

FPS
m 5

0.545

B3~11^L&h /Rc!
3 , ~25!

whereB5Reff/Rh . The value ofB appears to be relatively
constant at 0.94 for all of our experimental micellar systems
we show B5Reff/Rh in Fig. 8 for different values of
^L&h/Rc . We are thus able to provide a simple and surpris-
ingly accurate effective hard-sphere coexistence curve for
our phase diagram in Fig. 6.

IV. CONCLUSION

Our understanding of the phase behavior of polymeric
micelles benefits greatly from the predictions of pair interac-
tions using self-consistent mean field equations for tethered
chains. The range of the interaction potential is determined
from the properties of the coronal layer offering medium
range repulsions that dictate the nature of the liquid-solid
transition. We have used these interaction potentials to pre-
dict the thermodynamic properties of the liquid state using
integral equations. The Rogers-Young closure allows accu-
rate prediction of the liquid state properties that are tested by
monitoring the short-range correlations apparent in the mi-
cellar liquid through small angle scattering experiments. Fur-

thermore, the static structure factor is related to the Fourier
transform of the direct correlation function; this is the input
necessary for the density functional theory. Application of
the MWDA method predicts a liquid-solid transition favor-
ing fcc micellar crystals for all systems studied experimen-
tally by this group even for systems where diffraction results
clearly demonstrate the formation of a bcc lattice@26#.

The work of Laird and Kroll demonstrates the inability of
DFT methods to predict the stable formation of the bcc phase
for inverse-power potentials, even for conditions where mo-
lecular dynamics predict that the bcc phase is more stable.
They suggested that the inability to accurately model the
correlations over long distances explains the fallibility of
density functional theory. This suggestion implies that DFT
may predict a stable bcc phase for some interaction potential
yet to be discovered. It was our hope to test the ability of the
DFT theory to predict the ordering transition observed in our
polymeric micelles particularly the formation of the bcc
phase. We felt that because the interaction potentials in our
polymeric micelles act over a finite distance specified by the
micellar coronal chains that the DFT method might be able
to describe the particle correlations more accurately than it
does for the inverse-power potentials.

Our own investigations of the disorder-order transition
with MWDA suggests that the method works reasonably
well for our polymeric micelles. Comparisons of the reduced
pressure with the effective density for our systems and the
inverse-power potentials indicate that, in terms of the range
of the micellar interaction potentials, the DFT theory appro-
priately predicts a stable fcc phase. The fact that we experi-
mentally observe a stable bcc phase for some of our micellar
systems implies that a more fundamental assumption may
not be valid. Perhaps pairwise additivity for the potential
energy is not preserved. We must remember that the pair-
interaction potential is defined by the interaction of tethered,
polymer chains and that increasing the concentration in these
systems may adjust the thermodynamic behavior of the indi-
vidual chains. Yet, despite the complex nature of the inter-
actions in polymeric micelles, the application of pairwise
models allow much insight into the nature of disorder-order

FIG. 7. Comparison of liquid pressures as a function of effective
volume fraction for our micelles~•••! and the inverse power law
systems:n→`~—!, n512 ~-•-!, n59 ~- - -!, andn56 ~•-•-!.

FIG. 8. A plot of B ~Reff/Rh! as a function of the ratio of hy-
drodynamic layer thickness to core radius (^L&h/Rc). This plot
demonstrates the constancy ofB for our micellar systems and the
applicability of Eqs.~24! and ~25!.
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transitions in polymeric micelles including acceptable pre-
dictions of the coexistence curves.

Predicting the preference for lattice type~bcc or fcc! in
these micellar systems still remains a challenging and in-
triguing aspect of research on the ordering of polymeric mi-
celles. Since the experiments clearly demonstrate a prefer-
ence for the lattice type based on a consideration of the
length of the corona relative to core radius, we may have to
resort to more complex models to delineate between micelles
that favor the formation of bcc crystals over the fcc crystals.
One possible approach is fully three dimensional SCF calcu-
lations of the free energy of micelles placed on either an fcc
or bcc lattice. Although such a study may not provide liquid-

solid transition, it would allow a direct and accurate com-
parison of the free energy of the bcc solid relative to the fcc.
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